
NOISE-INSENSITIVE APPROACHES TO 
TWO-DIMENSIONAL SYSTEM 

IDENTIFICATION AND TEXTURE IMAGE 
SYNTHESIS 

Chong-Yung Chi and Chii-Horng Chen 
Department of Electrical Engineering 

National Tsing Hua Univresity 
Hsinchu, Taiwan, ROC 

Abstract - In this paper, Shalvi and Weinstein's 1-dimensional (1-D) 
computationally efficient super-exponential (SE) algorithm for blind de- 
convolution is extended to  2-dimensional (2-D) SE algorithm. Then a 
noiseinsensitive 2-D blind system identification (BSI) algorithm using 
the computationally efficient 2-D SE algorithm is proposed for the esti- 
mation of 2-D linear shift-invariant (LSI) systems. Moreover, a texture 
synthesis method (TSM) using the proposed BSI algorithm is proposed 
for-texture image synthesis. Finally, some simulation and experimental 
results are provided to  support the efficacy of the proposed BSI algo- 
rithm and that of the proposed TSM, respectively. 

1. INTRODUCTION 

Assume that we are given a set of 2-D measurements y[nl,nz] 

y[ni,nz] = '4711,1221 * h[ni,nz] + w[n1,5+32] 

= 2 5 h[h,h]U[nl  -h ,n2-k2]+w[n l ,n2]  (1) 
k1=-00 k a = - m  

where h[nl,nz] is an unknown 2-D linear shift-invariant (LSI) system, the 
driving input u[nl , nz] is an unknown wide-sense stationary random field, 
and w[nl , n2] is additive noise. Identification of the 2-D LSI system h[nl , n2J 

with 2-D measurements ~ [ n l  , n2] is of particular importance in a variety of 
2-D signal processing applications such as 2-D spectral estimation, image 
modeling, coding and restoration, and texture synthesis and classification. 

It is widely known that second-order statistics (correlations or power 
spectra [l]) can be used to extract the amplitude information of the sys- 
tem h[nl, nz] such as linear prediction b.wd methods [l], but they are blind 
to the system phase. Therefore, higher-order statistics, known as cumulants 
or polyspectra [2], that contain both the amplitude and phase information of 
h[nl, nz] when measurements y[nl , nz] are non-Gaussian, have been used for 
the estimation of the system h[nl,nz]. 
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Tugnait [3] estimates h[nl,nz] using 2-D inverse filter criteria of corre 
A lations and cumulants with application to texture synthesis. The estimate 
h[nl,nz] is obtained as the inverse system of the optimum inverse filter 
v[n1 ,n2]. With the assumptions (al) signal-tenoise ratio (SNR) equals in- 
finity and (a2) the inverse system h ~ ~ [ n l , n z ]  of h[nl,nz] is stable, he has 
shown that the optimum inverse filter v[n1, n2] = a h ~ w  [nl - 71,712 - 721 (per- 
fect equalization) where a: is a scale factor and [ T ~ ,  721 is a 2-D space shift. In 
practical applications, however, the SNR is always finite. Thu5 the optimum 
v[n1, n23 is affected by the noise w[nl, 1221, so is the estimate h[nl, n23. Feng 
and Chi [4] recently reported a performance analysis of 1-D inverse filter cri- 
teria for knite SNR. They show that for finite SNR, the phase response of 1-D 
estimate h[n] is equivalent to that of 1-D h[n], while the lower the SNR, the 
more the magnitude response of E[n] deviates from that of h[n]. Moreover, 
the optimum 1-D inverse filter w[n] is obtained through a complicated and 
computationally expensive iterative nonlinear optimization procedure. 

On the other hand, Shalvi and Weinstein [5] proposed an iterative 1-D 
super-exponential (SE) algorithm also using correlations and cumulants for 
blind charinel equalization. The 1-D SE algorithm is computationally a- 
cient since at each iteration, it finds the 1-D inverse filter v[n] by solving a 
set of linear equations. Under the same aforementioned assumptions (al) and 
(a2), the resultant 1-D v[n] was shown to reduce the amount of intersymbol 
interference (ISI) to zero (i.e., perfect equalization) with a super-exponential 
rate. In this paper, we propose a 2-D SE algorithm, an extension of 1-D SE 
algorithm, to obtain the 2-D inverse filter v[n1,n2]. Then a computation- 
ally efficient 2-D FFT based system identification algorithm is proposed that 
estimates h[nl, n23 from the obtained v[nl,nz]. The proposed 2-D system 
identification algorithm works well for finite (low) SNR, and the obtained 
estimate ̂ h[nl, n2] is applied to texture image synthesis. 

2. 2-D SUPER-EXPONENTIAL ALGOFUTHM 

Assume that the given measurements y[nl,nz] can be modeled by (1) 
under the following assumptions: 

(Al) u[nl,n2] is zero-mean, i.i.d., non-Gaussian with variance 0%. 

(A2) Both h[nl, n2] and its inverse system h 1 ~ [ n 1 ,  nz] are stable LSI systems. 
(A3) w[nl, n23 is white Gaussian with variance and statistically indepen- 

dent of u[n1, n2]. 

Let the inverse filter v[n1,n2] be an FIR filter with the region of support 

%bl,pzI = {[n1,n2] : n1 = 0 -p1,n2 = 0 - p z }  (2) 

(i.e., truncated quarter plane), and the output of u[n1,n2] is given by 

e[nl, n2] = g [ m ,  a21 * +I, n21 

= u[m,  n2] * g [ w ,  n21 + +l ,  n21 * n21 (3) 
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where 

is the overall system after deconvolution. 
g[nl 9 = h[nl? n2] * v[nl* n2] (4) 

( 5 )  

(6 )  

Let 
gf[nl> n21 = (g[nl, n2]>P(g* [n17 n21)' 

gf'[nl, n23 = g'[n1, n23 
1 

II gf[n1,n21 II 
where p and q are nonnegative integers and p+q 2 2,II x 11 denotes 2-norm of 
x. Specifically, we consider the case for p = 2 and q = 1. As l-D iterative SE 
algorithm [5], the 2-D SE algorithm iteratively forces g[nl, 1221 to converge to 
a delta function by updating the inverse filter v[nl , n2] through solving the 
following linear equations 

L=O k 0  

= cum{e[m,n],e[m,n],e*[m,n],y*[m - n1,n - nz]} (7) 
for nl = O,.. . ,pl ,nz = O,-..,pz where cum{x1,x2,x3,x4} denotes the joint 
cumulant of random variables XI, x2, x3, 2 4 ,  and the superscript '*' denotes 
complex conjugation. 

Next, let us present the 2-D SE algorithm in matrix form. For notational 
convenience, let (n)p denote "n modulo p" and [cl denote the largest integer 
less than or equal to c. At the ith iteration, the 2-D SE algorithm obtains 
the unknown parameter vector 

Where % is a @I 
(k, Z)th element given by 

1)@2 + 1) X (Pi + + 1) correlation matrix with the 

and de, is a (p1 + l)(pa + 1) x 1 vector containing the fourth-order cross 
cumulant of ej-1 [nl, nz] and p[n1, nz] with the kth element given by 

[d.& = ~{e i - i [n i ,nz] ,e i - i [~ l ,nz] ,  e~-l[m,n21, 

in which ei-l [nl, ns] is the equalized signal obtained at the (i - 1)th iteration. 
AS the SE algorithm converges, i.e., 11 Vj - Vj-1 [ I 2 <  ESE where ESE is a small 
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positive number, it can be shown that the obtained qn1, n2] is equivalent to  
h~w[nl,nz] (up to a scale factor and a space shift) when SNR = 00. On 
the other hand, when the SNR is finite and v[nl, n2] is doubly infinite, the 
obtained qn1, n2] can be shown to possess the following properties: 

(Pl) The inverse filter v[nl, n2] is related to the 2-D minimum mean square 
error (MMSE) equalizer [7], denoted V M S E [ ~ ~ ,  1221, via (in frequency- 
domain) 

where (Y is a positive constant, and 
v(wl9w2) = 0 * D(~l ,~Z)VMSE(~1,~2)  (12) 

and D(w1,wz) is the Fourier transform of the 2-D sequence 

4n1, n23 = g2[m , n219* [nl, n21 (14) 
where g[nl, nz] is given by (4). 

(P2) The phase response a r g [ V ( w ~ , w ~ ) ]  = - a x g [ l l ( w ~ , w ~ ) ]  - U171 - U272 
where T~ and 72 are unknown integers. 

The proof of (Pl) can be easily obtained by takiig Fourier transform of 
(7) with respect to  [n1,n2]. The proof of (P2) is presented in Appendix A. 

3. 2-D SYSTEM IDENTIFICATION 

Let Syy(w1,w2) be the power spectrum of y[nl, n2], and a[nl, n2] be the 
associated 2-D linear prediction error (LPE) filter with the leading coefficient 
a[O, 01 = 1 and the region of support fllIpl,pz] given by (2) or 

R2[pl,P2] = ([n1,n2] : 121 = 1 -Pl,n2 = -P2 -P2) 
U([n1, n2] : n1 = 0,122 = 0 - p z }  (15) 

(i.e., truncated asymmetric half plane). It is known [l]. that for p1 and pz 
sufficiently large, a[nl, n2] is a whitening filter with 

From (12), (13) and (16), it can be easily seen that 

where 

and 0 is a positive constant. Based on (17), an FFT based algorithm for 
estimating H(w1, w2) is presented as follows: 

Blind System Identificntion (BSI) Algorithm 

r(wl,  w2) = I v u l ,  w2)  I I ~ ( w ~ ,  w2) i2 (18) 

423 



Step 1 With finite data y[nl,nz], obtain the inverse filter v[nl,nz] using 
the 2-D SE algorithm presented in Section 2 and the 2-D LPE filter 
u[n1,n2] using 2-D Yule-Walker equations [l]. Compute V(w1 ,qZ), 
A(wk:, , wkz)  and I'(wkl, wka) given by (18) using L x L-point 2-D FFT, 
where wkl = 2nkl/L and wka = 2?rkl/L. 

Step 2 set i = 0. Set initial values I H [ ~ ] ( W ~ ~ , W ~ ~ ) ~  for I ~ ( w k ~  ,wkz)l .  

Step 3 Set i = i + 1. Compute 

(see (4)), and its L x Lpoint 2-D IFFT g[i-'][nl,n2]. 

L x Lpoint 2-D FFT D(wk, ,wka). 
Step 4 Compute d[nl, 12.21 using (14) with' g[nl, n2] = gli-l][nl, n2] and its 

Step 5 Compute IH[i](wkl,~ka)l using (17) then normalize it such that 

Step 6 If Ckl Cko[IH[i l (wk,  ,~k~) l - IH[~-~](wk,  , W ~ ~ ) I ] ~  > EH, then go to Step 

Ckl Ckz IH[il(Wkl,Wka)12 = 1. 

3; otherwise, 

ii(Wki,wka) = IH[il(%~,wka)l exP{-jarg[v(wk~,wkz)]} (19) 

(up to a scale fador and a space shift) is obtained (by (P2)). 

Two worthy remarks regarding the proposed BSI algorithm are as follows. 

(Rl) Because both the IH(wl,w2)l estimated using (17) (see Step 5) and the 
phase estimate arg[H(wk,, wkz)] = - arg[V(wk,, w k z ) ]  (by (P2)) are re- 
gardless of the value of the noise variance U:. So the obtained estimate 
H(wkl ,  W k a )  given by (19) is noise-insensitive. 
n 

(R2) The size of the unknown region of support for h(n1, n2) can be arbitrary 
as long as the 2-D FFT size L xnL is chosen sdciently large such that 
aliasing effects on the resultant h(n1, n2) are negligible. 

4. SYNTHESIS OF TEXTURX IMAGES 

Assume that we are given a texture image z[n1,n2] (finite gray levels) 
that can be modeled as (1) [3]. Let y[nl,nz] = z[n1,nz]-E{z[n1,n2]} (mean 
removed data). The proposed texture synthesis method (TSM) includes the 
following steps: 

Step 1 Obtain the texture image model X(n1,nz) and the 2-D LPE filter 
A(w1, w2) using the proposed BSI algorithm. 

Step 2 Estimate the MMSE equalizer (except for a scale factor) as 

PMSE(Wl,W2) = fi*(Wl,W2). IA(w1,w2>I2 (by (13) and (16)) (20) 
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and obtain the MMSE estimate of the driving input by 

Step 3 Generate a random field ii[nl,nz] that has the same histogram as 
U M S E [ ~ ~ ,  n2]. Then obtain a zero-mean synthetic texture image by 

A 

i7bl I7321 = qn1, n21 * I n21 (22) 

where the scale factor p is determined such that E(l3n1,nz]1~} = 

Step 4 The synthetic texture image Z[nl,n2] = 3nl,n2] + E{z[nl,n2]} is 
J W Y  412 ). 

quantized into finite gray levels as those of z [ n ~  , nz]. 

5. SIMULATION AND EXPERIMENTAL RESULTS 

In this section, we present some simulation results in Example 1 and some 
experimental results in Example 2 to support the efficacy of the proposed 
BSI algorithm and that of TSM, respectively. The proposed BSI algorithm 
was employed in these two examples with I H [ 0 1 ( W k l , W k 2 ) l  = 1, FFT size 
L x L = 256 x 256 and convergence parameters €SE = and EH = lo-'. 
Example 1- Simulation results 

In the example, u[n1, n2] was assumed to be a zero-mean, exponentially, 
i.i.d. random field with variance 0% = 1 and h[nl , n2] was a 2-D quarter plane 
causal AR(4,4) model taken from [SI. The synthetic y[nl, n23 was generated 
for data size equal to 256 x 256 and SNR = 5 dB. The same region of 
support nl[4,4] for both the 2-D inverse filter v[n1,nz] and the 2-D LPE 
filter was used. The true h[nl,n2] and the average of thirty independent 
estimates ;[nl,nz] are shown in Figures l(a) and l(b), respectively. One 
can see, from these figures, that the proposed BSI algorithm can provide an 
accurate estimate for the system h[nl,nz]. 

Example 2. Experimental results 

In the example, the region of support for the 2-D inverse filter v[nl, n23 
was n1[4,4], while that for the 2-D LPE filter was R2[4,4]. Four texture im- 
ages, grass, wood, raffia and sand with size 128 x 128 taken from USC-SIP1 
(University of Southern California - Signal and Image Processing Institute) 
Image Data Base were used for texture synthesis. The experimental results 
including original texture images and the synthetic texture images are shown 
in Figures 2(a) through 2(h). From these figures, one can see that the syn- 
thetic texture images quite resemble the original texture images. 

6. CONCLUSIONS 
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We have presented a noise-insensitive and computationally efficient BSI al- 
gorithm for the estimation of 2-D LSI systems and a TSM using the proposed 
BSI. Some simulation results that support the former and some experimental 
results that support the latter were presented. The proposed BSI works well 
even for low SNR as long as the data length is sufficiently large. 
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Appendix A - Proof of (P2) 

Proving (P2) is equivalent to proving that the overall system G(w1,wz) is 
zero phase assuming 71 = 72 = 0 without loss of generality. The proof to be 
presented below needs the following two assumptions 

(61) g[nl, n2] # 0 only for [nl, nz] E R[N, N ]  and g[O, 01 > 0 where 

qP1,pzl = h , n 2 ]  : nl = -P1 N P l , , 2  = -P2 - p z )  (23) 
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which’ by (B2) and (26), further gives rise to  

and 

and 

(31) 
g[nl n21 

9* E-% , -n2] 
_-- - g[o, O] - 1) V[n1, n2] E R[N, N] 
9* [O, 01 

(since g[O,O] > 0 by (Bl)) that implies 

g[n1,n2] = 9*[-n1,-nzl, V[n1,n2] E Q[N,N] (32) 
In other words, g[nl, n2] is zero phase, and we thus have completed the proof 
for (P2) under the two assumptions (Bl) and (82). However, the two as- 
sumptions can be relaxed by letting N + 00 for (P2) to be true. 
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Fig. l(a) Fig. l(b) 

Figure 1. 
(b) the average of thirty independent estimates 

Simulation results of example 1. (a) The true system h[nl,nz]; 
nz]. 

Fig. 2(a) Fig. 2(b) 

Figure 2. Experimental results of Example 2. Original and synthetic texture 
images: (a) grass and (b) synthetic grass image. 
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Fig. 2(c) 

m Q o 80 i m i m  

Fig. 2(e) 

m a ea ID m m  

Fig. 2(d) 

20 M 80 m i m m  

Fig. 2(f) 

m a ea no m m  

Fig. 2(h) 

Figure 2. (Continued) Experimental results of Example 2. Original and 
synthetic texture images: (c) wood and (d) synthetic wood image; (e) raffia 
and (f) synthetic raffia image; (g) sand and (h) synthetic sand image. 
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